Code: CE6T6

## III B.Tech - II Semester – Regular Examinations – April 2016

## GEOTECHNICAL ENGINEERING - II (CIVIL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Answer any FIVE questions. All questions carry equal marks

- 1. a) Discuss Standard penetration test. What are the various corrections? What is the importance of the test in Geotechnical engineering?7 M
  - b) Explain the need for soil exploration and Illustrate methods of it.

    7 M
- 2. a) Describe Bishop's simplified method and state its advantages over conventional Swedish circle method. 7 M
  - b) Determine the factor of safety with respect to cohesion, if an embankment of 20m height and having a slope of 45° is subjected to sudden drawdown.

$$C = 20 \text{ kN/m}^2$$
,  $\Phi = 30^\circ$ ,  $\gamma_{\text{sat}} = 18 \text{ kN/m}^3$   
(Take Taylor's stability number = 0.08) 7 M

3. a) State the assumptions made in Rankine's theory. Derive an expression for Active and Passive Pressure.

7 M

- b) A Retaining wall with a smooth back is 10m high. It supports a cohessionless soil ( $\gamma = 19 \text{ kN/m}^3$ ,  $\varphi = 30^\circ$ ). The surface of the soil is horizontal. Determine the thrust on the wall.
- 4. a) Discuss the considerations to be made in the design of a Retaining wall.

  7 M
  - b) Discuss about the stability of a Cantilever Retaining wall.

    7 M
- 5. a) State the assumptions made in the derivation Terzaghi's bearing capacity and give equation for the ultimate bearing capacity.7 M
  - b) Determine the ultimate bearing capacity of a strip footing 1.5m wide, with its base at a depth of 1m, Resting on a dry sand stratum, if the ground water table is located
    - i) At a depth of 0.5m below the ground surface.
    - ii) At a depth of 0.5m below the base of footing.

Take 
$$\gamma_d = 17 \text{ kN/m}^3$$
,  $\varphi = 38^\circ$ ,  $c' = 0$ ,  $\gamma_{sat} = 20 \text{ kN/m}^3$ . Use Terzaghi's theory  $(N_q = 60, N_\gamma = 75)$  7 M

6. a) Describe different types of settlements which can occur in a foundation and how are these Estimated?

7 M

b) Estimate the immediate settlement of a concrete footing,  $1m \times 2m$  size, founded at a depth of 1m in a soil with  $E = 10^4 \text{ kN/m}^2$ ,  $\mu = 0.3$ . The footing is subjected to a pressure of  $200 \text{ kN/m}^2$ . Assume the footing to be rigid.

7 M

- 7. a) Define 'Pile'. List out various types of pile foundations and explain each in detail. Give its uses.

  7. The pile is a superior of pile foundations and its explain each in detail. The pile is a superior of pile foundations and its explain each in detail.
  - b) Describe the method for determining the load carrying capacity of a pile by Pile Load Test.

    7 M
- 8. a) Discuss in detail about different shapes of wells and write characteristics of each type.

  7 M
  - b) List out various components of a well foundation and explain each in detail, also write their uses. 7 M